Analysis of a Modified First-Order System Least Squares Method for Linear Elasticity with Improved Momentum Balance
نویسندگان
چکیده
A modified first-order system least squares formulation for linear elasticity, obtained by adding the antisymmetric displacement gradient in the test space, is analyzed. This approach leads to surprisingly small momentum balance error compared to standard least squares approaches. It is shown that the modified least squares formulation is well-posed and its performance is illustrated by adaptive finite element computation based on using a closely related least squares functional as a posteriori error estimator. The results of our numerical computations show that, for the modified least squares approach, the momentum balance error converges at a much faster rate than the overall error. We prove that this is due to a strong connection of the stress approximation to that obtained from a mixed formulation based on the Hellinger-Reissner principle (with exact local momentum balance). The practical significance is that our proposed approach is almost momentum-conservative at a smaller number of degrees of freedom than mixed approximations with exact local momentum balance.
منابع مشابه
The Nonlinear Bending Analysis for Circular Nano Plates Based on Modified Coupled Stress and Three- Dimensional Elasticity Theories
In this paper, the nonlinear bending analysis for annular circular nano plates is conducted based on the modified coupled stress and three-dimensional elasticity theories. For this purpose, the equilibrium equations, considering nonlinear strain terms, are calculated using the least energy potential method and solved by the numerical semi-analytical polynomial method. According to the previous ...
متن کاملFirst-Order System Least Squares For Linear Elasticity: Numerical Results
Two first-order system least squares (FOSLS) methods based on L norms are applied to various boundary value problems of planar linear elasticity. Both use finite element discretization and multigrid solution methods. They are two-stage algorithms that solve first for the displacement flux variable (the gradient of displacement, which easily yields the deformation and stress variables), then for...
متن کاملNEW MODELS AND ALGORITHMS FOR SOLUTIONS OF SINGLE-SIGNED FULLY FUZZY LR LINEAR SYSTEMS
We present a model and propose an approach to compute an approximate solution of Fully Fuzzy Linear System $(FFLS)$ of equations in which all the components of the coefficient matrix are either nonnegative or nonpositive. First, in discussing an $FFLS$ with a nonnegative coefficient matrix, we consider an equivalent $FFLS$ by using an appropriate permutation to simplify fuzzy multiplications. T...
متن کاملFirst-Order System Least Squares for the Stress-Displacement Formulation: Linear Elasticity
متن کامل
First-Order System Least Squares (FOSLS) for Spatial Linear Elasticity: Pure Traction
This paper develops first-order system least-squares (FOSLS) functionals for solving the pure traction problem in three-dimensional linear elasticity. It is a direct extension of an earlier paper on planar elasticity [Z. Cai, T. A. Manteuffel, S. F. McCormick, and S. V. Parter, SIAM J. Numer. Anal., 35 (1998), pp. 320–335]. Two functionals are developed, one involving L norms of the first-order...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 49 شماره
صفحات -
تاریخ انتشار 2011